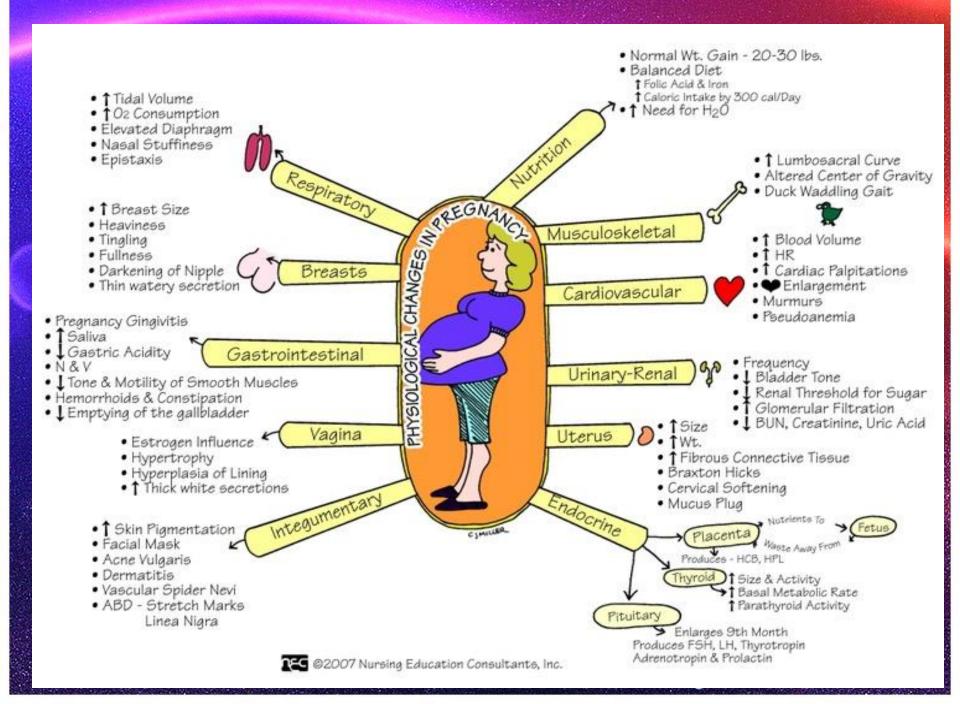


PHYSIOLOGICAL CHANGES DURING PREGNANCY

LEC1 DR. SAWSAN TALIB ASSISTANT PROFESSOR IN DEPARTMENT OF OBSTETRICS AND GYNECOLOGY COLLEGE OF MEDICINE/ DIYALA UNIVERSITY


Objectives

- To make the student able to:
- interpret the reason for the maternal physiological changes
- Describe the changes involving CVS, respiratory, renal and other systems
- Specify the investigation in accordance with the physiological changes

- Maternal physiologic adjustment to pregnancy are designed to support the requirements of fetal homeostasis and growth.
- This is accomplished by remodeling maternal systems:
 To deliver energy and growth substrates to the fetus
 To remove inappropriate heat and waste products
- Those maternal adaptation maintain a healthy environment for the fetus.
- These changes are due to

•

- 1. Hormonal changes
- 2. Increasing size of uterus and fetus
- **3.** Anatomical changes
- In a non-pregnant patient, many of these alterations would be considered pathologic rather than physiologic. This lecture will present the adjustments and alterations in maternal physiology."

Hematologic Changes in Pregnancy

Table 5.1: Principal Blood Changes during Pregnancy				
Parameters	Nonpregnant	Pregnancy Near Term	Total Increment	Change
Blood volume (mL)	4000	5500	1500	+ 30–40%
Plasma volume (mL)	2500	3750	1250	+ 40–50%
Red Cell volume (mL)	1400	1750	350	+ 20–30%
Total Hb (g)	475	560	85	+ 18–20%
Hematocrit (whole body)	38%	32%		Diminished

- BLOOD VOLUME starts to increase from about 6th week, expands rapidly thereafter to maximum 40–50% above the nonpregnant level at 30–34 weeks. The level remains almost static till delivery.
- PLASMA VOLUME: It starts to increase by 6 weeks and it plateaus at 30 weeks of gestation The increase is greater in multigravida, in multiple pregnancy and with large baby.
- RBC AND HEMOGLOBIN: This increase is regulated by the increased demand of oxygen transport during pregnancy. RBC mass begins to increase at about 10 weeks and continues till term without plateauing.
- The disproportionate increase in plasma and RBC volume produces a state of hemodilution (fall in hematocrit) during pregnancy. Thus, even though the total hemoglobin mass increases during pregnancy to the extent of 18–20%, there is apparent fall in hemoglobin concentration

Why there is increase in the red cell volume?

Increase in total metabolism

Increase in total oxygen consumption

Demand for increase in total oxygencarrying capacity of blood

Increase in total red cell volume

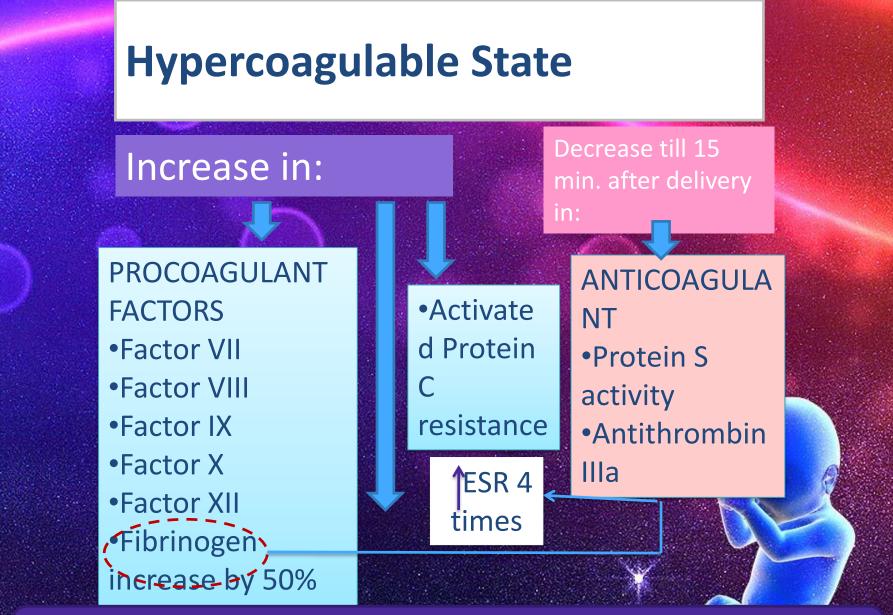
PREGNANCY

concentrations of estrogen & progesterone

Directly act on kidney

Causing release of renin

Activates aldosterone-reninangiotensin mechanism


Renal sodium retention & in total body water

A Blood volume
 A in plasma volume (45%)
 A ht
 A Physiological anemia

•To allow adequate perfusion of vital organs including placenta and fetus and protect mother from erect and supine position

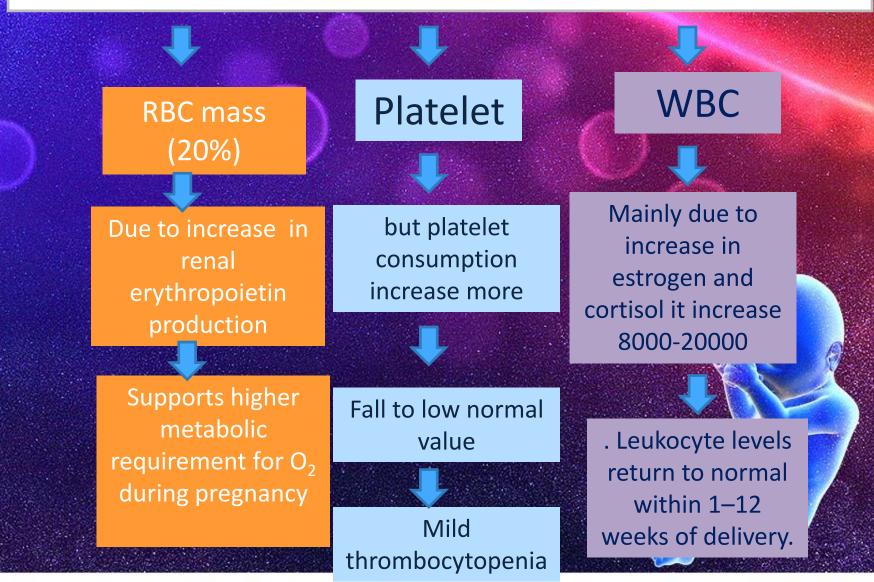

- •To anticipate blood loss a/w delivery
- •Diminished blood viscosity ensures optimum gaseous exchange between the maternal and fetal circulation

Table 5.3: Changes in Blood Coagulation Factors			
Parameters	Nonpregnant	Pregnancy near term	Change
Platelets (mm ³)	1,60,000– 2,00,000	Conflicting observation	Static or 15% reduction of the count
Fibrinogen (mg%)	200–400	300–600	+ 50%
Fibrinolytic activity		Depressed	—
Clotting time		Unaffected	
ESR	10 mm/h	40 mm/h	Marked increase (4 times)

Levels of coagulation factors normalize 2 weeks postpartum

Increased production of:

Immunosuppresive State

Approximately 30% of women develop IgG abs against the inherited paternal human leukocyte Ag of fetus

BUT, the role of these abs is UNCLEAR & there is no evidence of attack on fetus

Lack of maternal immunity towards the fetus

Due to reduced no of cytotoxic T cells (CD8+) during pregnancy Allowed fetal allograft to implant & develop

> Potentially harmful T cellmediated immune responses downregulated & components of innate immune system activated instead

		The second second	
Table 5.6: Changes in Respiratory System			
Parameters	Non- pregnant	Pregnancy near term	Change
Respiration rate/min	15	15	Unaffected
Vital capacity (mL)	3200	3300	Almost unaltered
Tidal volume (mL)	475	675	+ 40%
Residual volume (mL)	965	765	– 20%
Inspiratory capacity (IC)	2500	2650	+10%
Minute ventilation	7.5 L/min	10.5 L/min	+40%
Total lung capacity (mL)	4200	4000	-5%

Airway

Weight gain (neck, oropahyngeal tissue, breast, chest wall) and airway edema can compromise the airway \rightarrow difficulty to visualize larynx during tracheal intubation

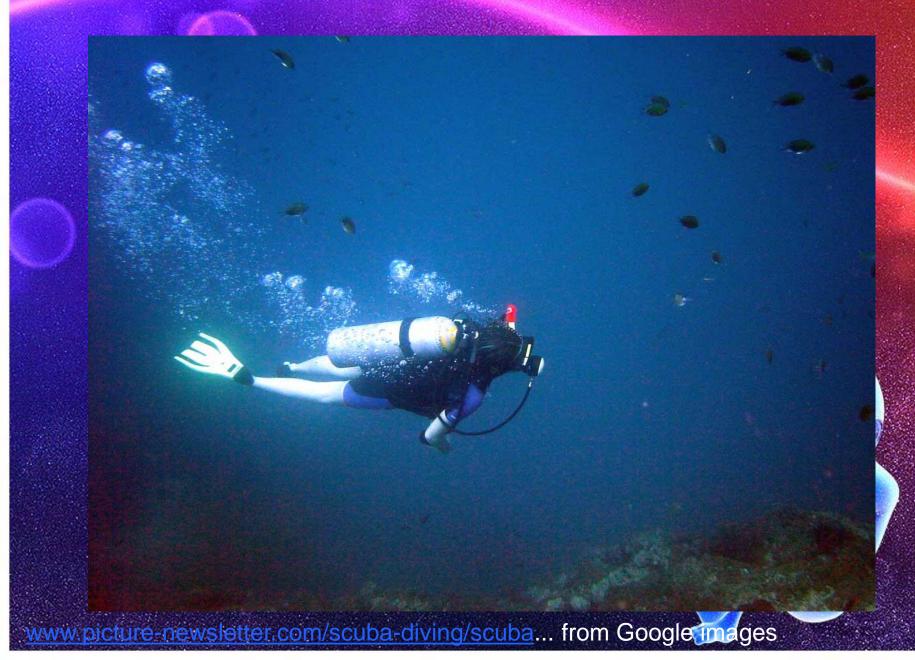
Increase vascularity of the respiratory tract and nasal mucosa \rightarrow edema and prone to bleeding

Ventilation

Begins around 8th week of gestation

Increase in ventilation

 Most likely in response to progesterone related sensitization of the respiratory centre to CO2 and increase in metabolic rate

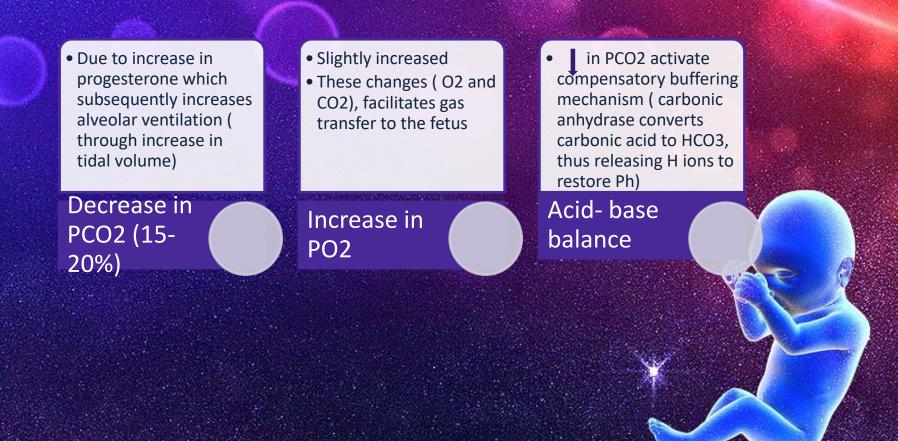

Changes in mechanical aspects of ventilation

- Increase in tidal volume by 40% (from 500- 700 ml)
- Reduction in functional residual capacity

Thoracic anatomy changes

- Elevation of the diaphragm by about 4 cm by enlarging uterus and reconfiguration of the chest wall total lung capacity is reduced 5%due to it
- Change in lung volume and increase in pulmonary blood flow

Functional residual capacity (FRC) is our "air tank" for apnea.


Pregnant Mom has a smaller "air tank".

This make mother more suscetable to effects of apnea (during intubation

www.pyramydair.com /blog/images/scubaweb.jpg

Nonpregnant woman

Arterial Gases

Anatomic Changes

Heart rotates on its long axis → apex point left-upward

Heart size increase

Uterine enlargement

Diaphragm elevation

Increase in myocardial mass

Increase in vascular changes

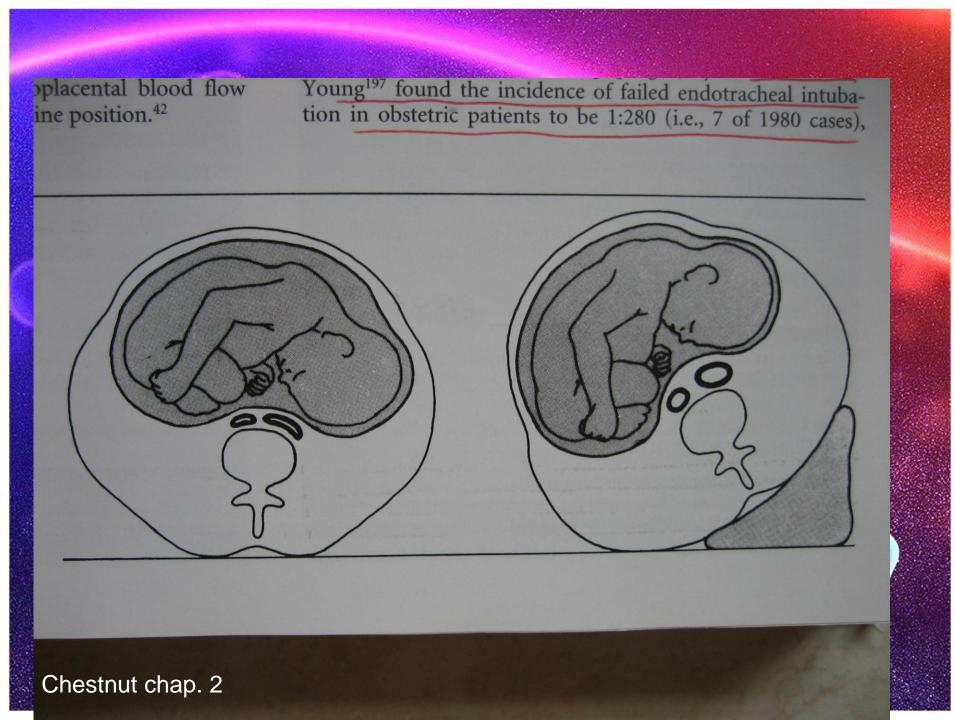
Cardiac Output

Increase ~40% during pregnancy (max at 30-34 weeks about 40-50%)

Increased

1. blood volume.

2. To meet the additional O2 required due to increased metabolic activity during pregnancy.


Resting maternal heart rate:

- Progressively increase over the course of gestation
- 15 beats more than non pregnant state

Stroke volume increase 25-30% :

- Sensitive to maternal position
- Supine → aortocaval compression → decrease stroke volume → supine hypotension syndrome (syncope, bradycardia, hypotension)

Blood Pressure

Pulse pressure widen → due to diastolic falls greater than systolic

Venous pressure → progressively increase in lower extremities

> Compression of vena cava by gravid uterus

Will cause edema and varicosities Peripheral vascular resistance → decrease

> Hormonal changes enhance local vasodilators such (nitric oxide, prostacyclin, adenosine)

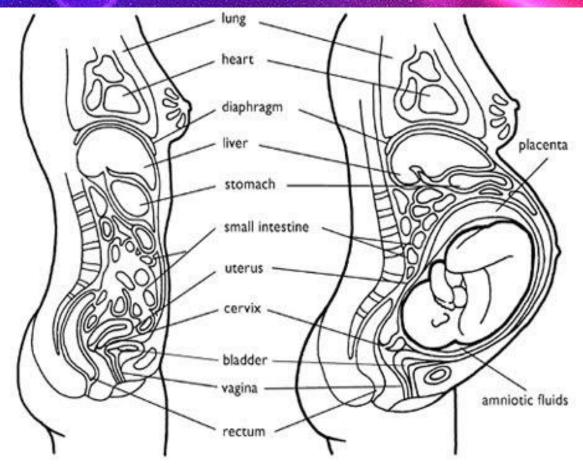
Clinical findings in cardiovascular system examination

Systolic ejection murmur

 Results from increase cardiac output and decrease blood viscosity Continuous murmur@bruit at left sternal edge → arise from internal thoracic artery mammary murmur".

Splitting of first heart sound

ECG


• Left axis deviation

Parameter	Percentag	ge of change
Cardiac output	40-50%	Increase
Stroke volume	30%	Increase
Heart rate	15-25%	Increase
Intravascular volume	45%	Increase
Systemic vascular resistance	20%	Decrease
Systolic BP		Minimal
Diastolic BP	20%	Decrease at mid-pregnancy Pre-pregnant values at term
CVP		Unchanged
O ₂ consumption	30-40%	Increase

REGIONAL DISTRIBUTION OF BLOOD FLOW

- Uterine blood flow is increased from 50 mL/min in nonpregnant state to about 750 mL near term.
- The increase is due to the combined effect of uteroplacental and fetoplacental vasodilatation
- The vasodilatation is due to the smooth muscle relaxing effects of progesterone, estrogen, nitric oxide (endothelium derived factor), prostaglandins and atrial natriuretic peptide (ANP).
- The blood flow through the skin and mucous membranes reaches a maximum of 500 mL/min by 36th week. Heat sensation, sweating or stuffy nose complained by the pregnant women can be explained by the increased blood flow.

Difference in Gastrointestinal tract in Pregnancy and Non pregnant state

As the baby grows, he/she pushes the woman's stomach up.

Gastro-intestinal changes

- *Increased salivation* (ptyalism)
- Taste is often altered very early in pregnancy
- Heart burn (reflux oesophagitis)

relaxation of the cardiac sphincter due to progesterone and relaxin

- Emesis gravidarum, morning sickness in 50 %
- Decreased gastric acidity, which interfere with iron absorption

Constipation

reduced gut motility due to progesterone increased water and salt absorption

Relaxation of sphincter ---regurgitation -- heartburn Slight reduction in gastric secretion and diminished gastric motility result in slow emptying --- more efficient pulping of food. May also cause nausea. Reduced motility in small intestine - increases time for absorption. Growth of conceptus and

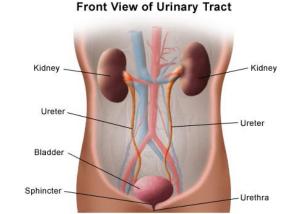
Reduced motility of large intestine increases time for water absorption but also tends to induce constipation.

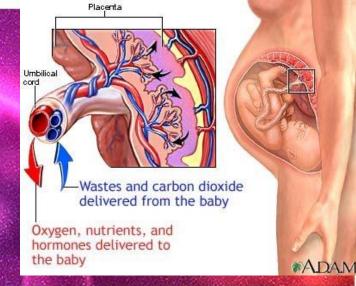
Growth of conceptus and uterus – increases appetite and thirst. In late pregnancy pressure of the uterus reduces capacity for large meals — frequent small snacks.

Gastro-intestinal changes

Liver

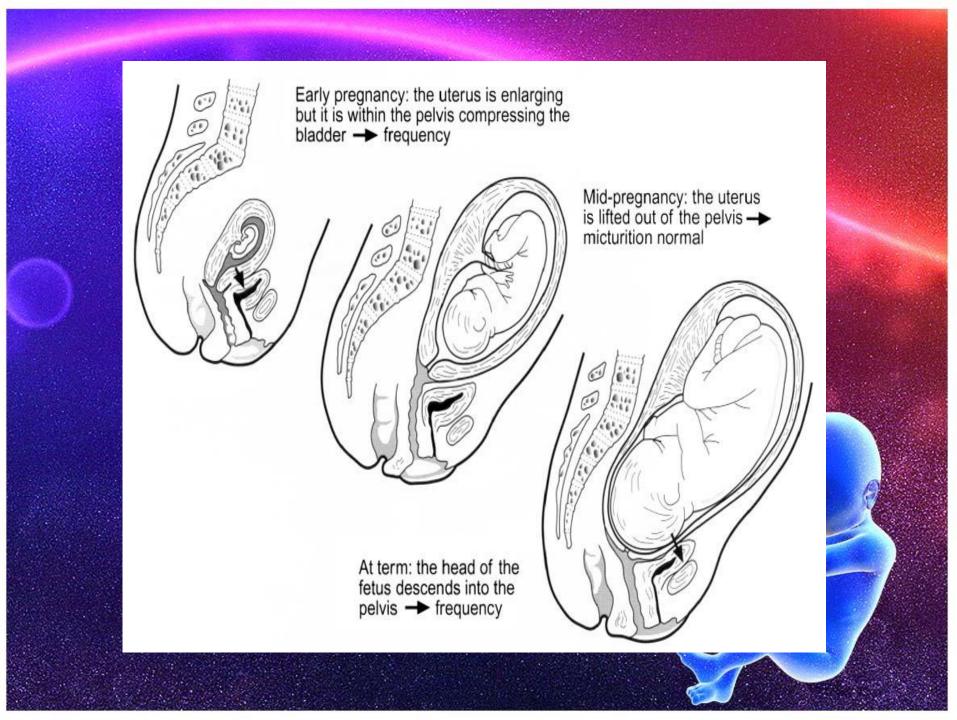
- Hepatic synthesis of albumin, plasma globulin and fibrinogen increases
- Total hepatic synthesis of globulin increases stimulated by estrogen
- Hormone-binding globulins rise
- gall bladder increases in size and empties more slowly
- relaxation of gall bladder increases the tendency of stone formation
- cholestasis is almost physiological
- secretion of bile is unchanged


Urinary changes


Kidneys

- increase in size
- hydronephrosis
- effective renal plasma flow is increased

Dilatation of the ureters


- Atony of the ureteric muscles caused by progesterone and relaxin hydro-ureter
- vesico-ureteric reflux increased pressure of the uterus on the ureter affects more the right ureter due to the dextro-rotation of the uterus Changes in the ureter in pregnancy leads to urinary stasis and pyelitis

The urinary tract and renal function

- blood flow increase (60-70%).
- glomerular filtration increased (50%).
- clearance of most substances is enhanced.
- plasma creatinine ,urea,urate are reduced.
- glycoseuria is normal.

Uterus

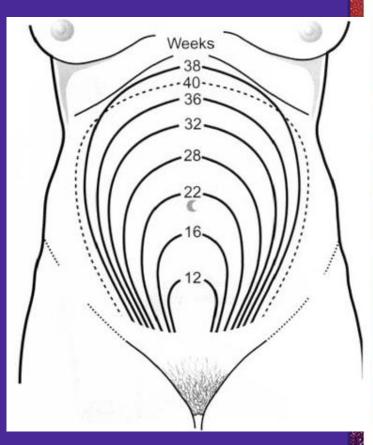
	Non Pregnant Uterus	Pregnant Uterus	
Muscular Structure	Almost Solid	Relatively thin – walled (≤ 1.5 cm)).
weight	60 g, and measures about 7.5 cm in length	weighs 900–1,000 g and measures 35 cm in length.	R
Volume	cavity of 5–10 mL	The capacity is increased by 500–1,000 times.	

Mechanism Of Uterine Enlargement

Stretching & marked hypertrophy of muscle cells.

Considerable increase in elastic tissue

Accumulation of fibrous tissue, particularly in the external muscle layer.

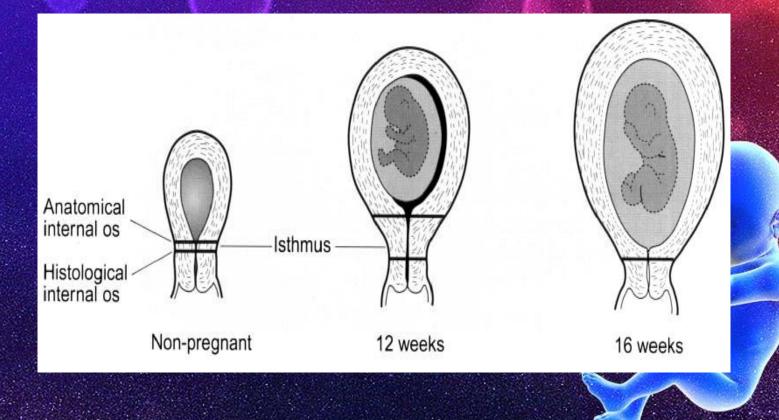

Arrangement of the muscle fibers

- (1) Outer longitudinal—It follows a hood-like arrangement over the fundus
- (2) Inner circular—It is scanty and sphincter like arrangement around the tubal orifices and internal os
- (3) Intermediate—It is the thickest and strongest layer arranged in crisscross fashion through which the blood vessels run called the living ligature
- Vascular system Whereas in the nonpregnant state, the blood supply to the uterus is mainly through the uter ne and least through the ovarian but, in the pregnant state, the latter carries as much the blood as the former

Contractions (Braxton-Hicks):

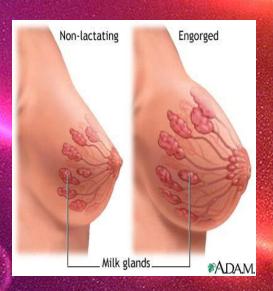
- Uterine contraction in pregnancy has been named after Braxton- Hicks who first described its entity during pregnancy. From the very early weeks of pregnancy, the uterus undergoes spontaneous contraction. This can be felt during bimanual palpation in early weeks or
- during abdominal palpation when the uterus feels firmer at one moment and softer at another. Although spontaneous, the contractions may be excited by rubbing the uterus. The contractions are irregular, infrequent, spasmodic and painless without any effect on dilatation of the cervix. The patient is not conscious about the contractions. Intrauterine pressure remains below 8 mm Hg. Near term, the
- contractions become frequent with increase in intensity so as to produce some discomfort to the patient. Ultimately, it merges with the painful uterine contractions of labor. In abdominal pregnancy, Braxton-
- Hicks contraction is not felt.

16 wks	3 finger widths above symphysis
20 wks	3 finger widths below umbilicus
24 wks	at umbilicus
28 wks	3 finger widths above umbilicus
32 wks	between umbilicus and xyphoid process
36 wks	at costal arch
40 wks	1-2 finger widths below costal arch



CERVIX

- Estradiol + progesterone → swollen and softer during pregnancy
- Estradiol → stimulates growth of columnar ep. of cervical canal → ectropion (visible on ectocervix) → prone to contact bleeding
- ↑ vascularity → look bluer
- Mucous glands → distended + ↑ complexity → ↑ secretion → mucus thickened → protective plug
 PG (remodelling of cervical collagen) + collagenate (from leukocytes) → softening


 Estrogen → vaginal epithelium thicker → ↑ desquamation rate → ↑ vaginal discharge → > acidic → protect against ascending infection

Vagina become more vascular.

BREAST

- **Deposition of fat** around the glandular tissue
- Estrogen → ↑ number of glandular ducts
- Progesterone + hPL → ↑ number of gland alveoli
 - hPL → stimulate synthesis of alveolar casein + lactoglobuli lactalbumin
- ↑ [serum prolactin] in pregnancy → antagonized by estrogen
 → no lactation

- **48 hours** after birth \rightarrow rapid \downarrow of [estrogen] \rightarrow lactation
- End of pregnancy and early puerperium → colostrum produced (thick yellow secretion + 个 immunoglobulin)

Early + frequent suckling \rightarrow stimulates ant. and post. Pituitary gland \rightarrow prolactin + oxytocin \rightarrow promotion of lactation

Stress + fear $\rightarrow \uparrow$ dopamine $\rightarrow \downarrow$ synthesis and release of prolactin

- 2-3 days of puerperium → prolactin → alveoli distended by milk → breast engorgement
- oxytocin → myoepithelial cells surrounding alveoli and small ducts contract → squeezes milk into larger ducts and subareolar reservoirs
- Oxytocin → inhibit dopamine → ↑ prolactin → successful lactation

Suckling causes:

Afferent signals to posterior pituitary increasing oxytocin release, inducing myoepithelial cells to contract and express milk.

Afferent signals to anterior pituitary increasing prolactin release, thus increasing milk synthesis.

 Peptide and steroid hormones produced by

 Non-pregnant: endocrine glands
 Pregnant: intrauterine tissues

Hormones

Pregn			
Progn	ancv	cno	CITIC
ILCEI		SPC	

 Human chorionic 	
gonadotrophin (hCG)	

• • •	
 Human chorionic gonadotrophin (hCG) 	• α and β (pregnancy specific; produced by trophoblast \rightarrow detectable w/in days of implantation) • production influenced by leukemia inhibitory factor (LIF) and isoform of GnRH • Maintain corpus luteum's fx • peak values @10w \rightarrow progesterone by placenta $\rightarrow \downarrow$ to plateau @>12w • α hCG $\approx \alpha$ of LH, FSH, TSH \rightarrow supress FSH and LH secretion by ant. pituitary
 Human placental lactogen (hPL) 	 Produced by placenta partial homology with prolactin and hGH

Hormones	
Steroids	 produced by placenta and fetus Concentration ↑ earliest weeks of pregnancy → plateau Effects upon myometrium and (+prolactin) breast tissue effects on smooth muscle of vascular tree, GIT, GUT
• estrogen	 max 个 30-40mg/day (80% estriol) encourages cellular hypertrophy (uterus, breast) Alter chemical constitution of con. tissue Water retention Reduce sodium excretion
• progesterone	 reduce smooth muscle tone ↓ stomach motility → nausea ↓ colon activity → delayed emptying → ↑ water reabsorb → constipation ↓ uterine tone → prevent contraction ↓ vascular tone → diastolic P ↓ → venous dilatation ↑ temperature ↑ fat storage Induce over-breathing Induce development of breast

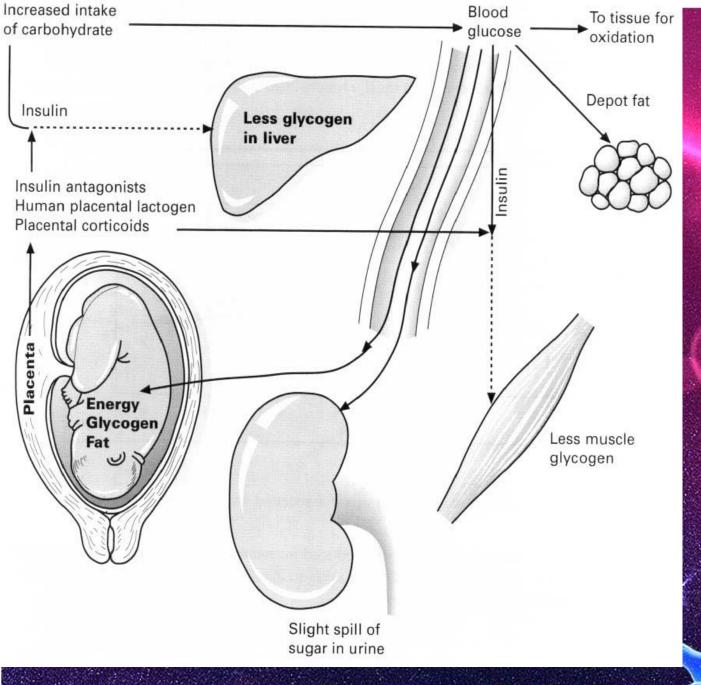
Hormones	
Pituitary related	
• Prolactin	 produced by lactotrophs of ant pituitary and cells of decidua Rc in trophoblast cells and w/in amniotic fluid Stimulated by estrogen and sleep Inhibited by hPL and dopamine agonist essential of lactation
•Human growth hormone (hGH)	 production by ant pituitary supressed in pregnancy [hGH] ↓ hPL supress hGH
•Adrenocorticotrophic hormone (ACTH)	placental clock theory

Pituitary gland increase 30% in weight in first pregnancy (50% in next pregnancy) \rightarrow can produce headache

South South	Hormones	
	Hypothalamus related	
CONTRACTOR DE LA CONTRACTÓRIO DE LA	 Gonadotrophin-releasing hormone (GnRH) Corticotrophin-releasing factor (CRF) 	CRF \rightarrow placental clock theory
253	Other peptides	
	 Insulin-like growth factor I and II (IGF) 1,25- Dihydroxycholecalciferol Parathyroid hormone- related peptide Renin Angiotensin II 	 IGF regulates fetal growth IGF I and II: produced by fetal cells (in liver) and maternal cells (in uterus) IGF II predominated in fetal circulation 1,25-(OH)₂D3: 个 calcium absorption

ensure continuous glucose supply to fetus

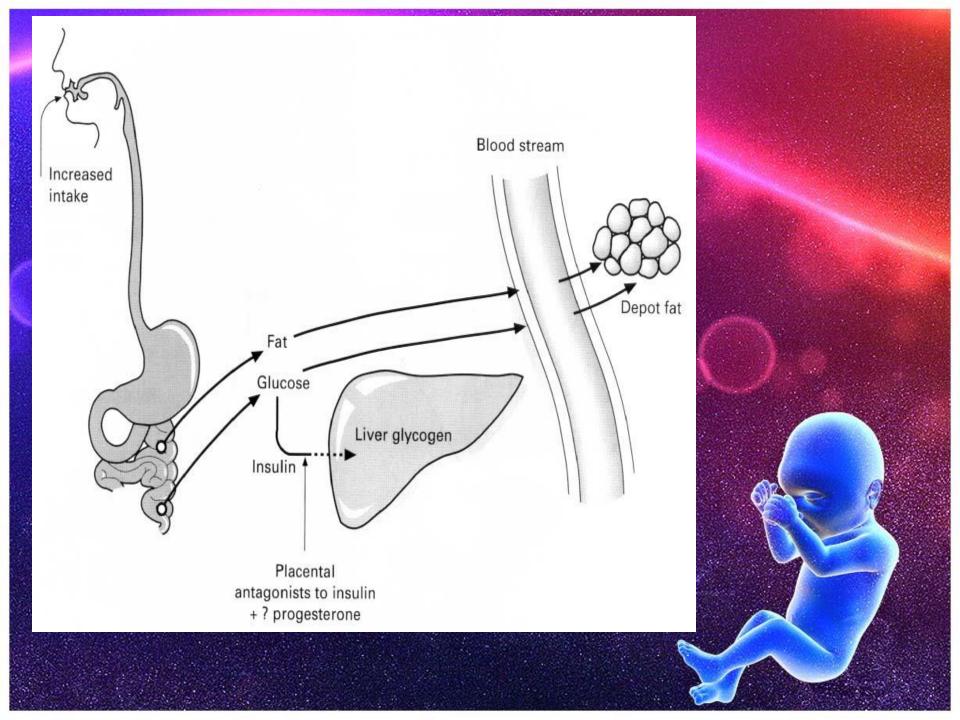
GLUCOSE METABOLISM


Estrogen, progesterone Hpl, prolactin, cortisol, FFA

contrainsulin factors

hyperinsulinemia (resistance)

lipogenesis, hyperlipidemia, hyperketonemia


Fasting hypoglycemia (fetal consumption) PP hyperglycemia& hyperinsulinemia

Fat metabolism

- 4kg fat is stored by 30 weeks of gestation
- Mostly in form of depot in abdominal wall back and thighs.
- Modest amount stored in breast
- Three points to be noted
 - Total metabolism and energy demand ↑
 - Glycogen stores are diminished
 - Although blood fat in greatly increase only a moderate amount stored

Endocrinal changes

Pituitary

anterior pituitary increases in size and activity

- posterior pituitary releases oxytocin on the onset of labor

Thyroid

- increases in size and activity: physiological goiter
- most pregnant women are euthyroid
- thyroid binding globulin concentrations double (not other thyroid binding proteins)

- total T3, T4 are increased (not the free T3, T4)

Parathyroid

increases in size and activity to regulate calcium metabolism Adrenals

- increases in size and activity
- total cortisol is increased (free cortisol unchanged)

Skin changes

Pigmentation

due to increased melanocyte stimulating hormone: - linea nigra: pigmentation of the linea alba, more marked below the umbilicus - chloasma gravidarum: Butterfly pigmentation of the face (mask of pregnancy)

and the second

Striae gravidarum

- stretch of the abdominal wall
- rupture of the subcutaneous elastic fibers
- pink lines in flanks
- become white after labor

Weight increase

- There is an increase weight of approximately 12.5 Kg at term
- The main increase occurs in the 2nd half of the pregnancy, Kg/week
- Causes:

growth of the conceptus enlargement of the maternal organs maternal storage of fat increase in maternal blood and interstitial fluid

Your blood: 3-4 pounds

0.5

Your protein and fat storage: 8-10 pounds

Your body fluids: 3-4 pounds

- Importance of weight checking: Single weight checking is of little value except to identify the overweight or underweight patient. Periodic and regular weight checking is of importance to detect abnormality.
- Rapid gain in weight of more than 0.5 kg (1 lb) a week or more than 2 kg (4 lb) a month in later months of pregnancy may be the early manifestation of preeclampsia and need for careful supervision.
- I Stationary or falling weight may suggest intrauterine growth retardation or intrauterine death of fetus.
- Obese women are in increased risk of complications in pregnancy, labor and puerperium
- Ideally weight gain should depend on pre-pregnancy body mass index (BMI) level .
- Weight gain for a woman with normal BMI (20–26) is 11–16 kg. An obese woman (BMI > 30) should not
- gain more than 7 kg, whereas an underweight woman (BMI < 19) may be allowed to gain up to 18 kg

Skeletal changes

Increased lumbar lordosis

 Relaxation of pelvic joints and ligaments due to progesterone and relaxin

Postural changes in pregnancy

ANTERIOR ANGULATION OF THE CERVICAL REGION:

Cervical Dorsalgia Thoracic Outlet Syndrome Pain between the shoulder blades Neck pain Arm pain and numbness

ANTERIOR TILT OF THE PELVIS: Sciatica Low back pain Leg pain Difficult breathing

HYPEREXTENSION OF THE KNEES AND FLATTENING OF THE FOOT ARCHES:

> Heel pain Foot pain

EXTENSION OF OCCIPUT AND THE FIRST VERTEBRAE:

Suboccipital Neuralgia Myalgias Neck pain and stiffness Headaches Sinus Problems Allergies

> Hyperkyphosis of the Upper Thoracic Region:

Intercosal Neuralgia (rib pain) Trouble breathing Poor Digestion

ACCENTUATED LUMBAR LORDOSIS: Low back pain and strain Constipation

